Blue Frontier's energy storing, electrically driven, desiccant enhanced evaporative cooling air conditioning system (BF ES/AC) combines two familiar processes: a desiccant, latent-cooling stage, followed by an indirect evaporative cooling stage. This combined process significantly reduces the energy required to generate air conditioning and is suitable for all climates – both dry and humid. The company's patented system is derived from cutting edge NREL research and includes an added component for storing excess renewable energy and/or waste heat in the form of a high concentration salt solution.

TECHNOLOGY BENEFITS

- **60%** reduction in energy use
- **90%** reduction in peak electrical demand
- **4-7 hours** energy storage cooling capacity
- **85%** reduction in GWP from refrigerants

Blue Frontier's smart air conditioning system was chosen for TED because it supports California’s clean energy goals of increased energy efficiency, reduced GHG emissions, energy storage capacity, and demand flexibility.
Blue Frontier’s core air conditioning/energy storage technology integrates Desiccant Enhanced Indirect Evaporative Cooling, thermochemical energy storage and an efficient converter for transforming renewable electricity into heat.

Electricity drives a heat pump that generates 140°F to 160°F heat (efficiency increases as ambient temperature increases).

Heat is used to concentrate a liquid desiccant, releasing water that is recovered for later use to drive air conditioning.

High concentration liquid desiccant is stored in an energy storage tank providing 4-7 hours of near zero energy cooling.

When air conditioning is required, high concentration liquid desiccant generates air conditioning by dehumidifying air and then subjecting this low humidity air to indirect evaporative cooling.

AC BASE CASE PERFORMANCE REVIEW
Baseline comparison through modeling/analysis tools by Blue Frontier.

HIGH IMPACT EXAMPLE
Hot and dry environment with a high cooling load.

Per 5-ton unit A/C electricity cost comparison*

*Note: Comparison to replace an existing 2020 energy code compliant 5-ton AC condensing unit in the high desert (CZ-15). Includes heat pump kW and kWh for regeneration, does not include blower motor or winter heating energy, which are equivalent to current high efficiency packaged RTU equipment.
TARGET CUSTOMERS

✓ Non-residential building owners/operators who require 5 – 10 ton packaged rooftop units and replacement systems
✓ New building construction
✓ Electric utilities that offer energy efficiency, demand response, and energy storage programs.

HARDWARE COMPATIBILITY

✓ Thermochemical medium - non-toxic, non-volatile, non-flammable and very high density
✓ Efficient, sustainable and permanently reduces energy and demand charges
✓ High-COP air source heat pump regenerator transforms/ stores intermittent solar electricity
✓ Load-shift up to 8 hours (50 kWh) of either building solar energy or excess from the grid
✓ Unit can be scaled from 1- 50 tons
✓ IP covers a platform technology that can be applied as a direct 1-for-1 replacement of existing vapor compression units

SYSTEM BENEFITS

ELECTRIC HVAC

DEMAND FLEXIBILITY

LOW MAINTENANCE

HIGH EFFICIENCY

LOW GWP REFRIGERANT

DRY & HUMID CLIMATES

ENERGY STORAGE

SUPPORTS CA DECARBONIZATION GOALS

DISPATCHABLE DER
California’s executive order B-55-18 mandates that the state achieve carbon neutrality by 2045. Additional legislation supports this goal through multiple strategies that include double energy savings by 2030 (SB 350), increased demand flexibility (19-OIR-01), advanced energy storage and 100 percent of all retail electricity from renewable energy (SB 100). Applying these strategies to new construction and upgrades to existing buildings provides a path to achieving carbon neutrality but also comes with a new set of challenges:

1. **Supporting the goal**
 New technologies for buildings must support most or all of the desired outcomes for California.

2. **Testing and codes**
 Implementation requires extensive testing, compliance with existing codes and standards, utility participation and an enabled workforce.

3. **Replacing the old**
 Requires replacement of old technologies. The new technologies must meet or exceed expectations for performance and return on investment.

Compared to conventional AC systems, Blue Frontier’s ES/AC reduces energy use by at least 60% (and up to 90%) and efficiently stores and load-shifts renewable energy, reducing peak electrical demand by up to 90%. A 5-Ton system eliminates ~6 kW of peak electrical demand and saves ~10 MWh/year over conventional AC.

When providing cooling from energy storage, Blue Frontier’s EER is 114 @ 105F (33.4 COP, 105 watts/Ton) and when not running on stored energy the EER is 31.4 @ 105F (9.2 COP, 380 watts/Ton). IEER = 38, Energy Storage IEER = 129.
Market barriers to replacement of old HVAC systems in commercial buildings

A state-wide emphasis on decarbonization of commercial and multifamily buildings supports a large potential market for a technology like Blue Frontier, with the beach-head of opportunity in utility demonstrations (NY & CA) within a serviceable, available market of 2.6 million units/year. The total addressable market for Blue Frontier is 40 million units in the US alone.

BARRIERS STILL EXIST IN SEVERAL AREAS:

FOR EXPANSION
- Field demonstration data
- Utility specific use cases
- Lack of brand awareness

TO SCALE
- Manufacturing supply chain
- Workforce training
- Customer adoption
- Development of distribution and service relationships

CREATING A PATH TO COMMERICALIZATION THROUGH THE FOLLOWING ACTIVITIES:

UTILIZE LEVERAGE POINTS
- Stakeholder supported grants worth >$3M
- Collaboration with EPRI
- Networking with SCE and other IOUs
- Field test in CA
- Align with CA Priority Partnership Areas

REALIZE COMPANY GOALS
- Field demonstrations with customers in NE and SW
- Expand manufacturing capabilities
- Apply for CA CEC EPIC Program funding
- Apply to utility RFOs for region-specific field testing and support their demand flexibility strategies
- Expand interest across utilities and industry professionals
Market readiness

6-7 TECHNOLOGY READINESS LEVEL SCORE

- 2021: Validate full-scale production-ready design NREL & CalTestBed

2 YEARS TO MARKET

- 2023-2024: Limited release of 1,000 units to prove performance and reliability
- 2024-2025: Accelerate market penetration through ESCOs Enter into MW-scale energy storage and NWA utility contracts

4 MANUFACTURER READINESS LEVEL SCORE

- Researching high-volume microporous membranes
- Fans and liquid desiccant are readily available
- Contract manufacturing to produce final product

3 KEY OUTCOMES

- HIGH EFFICIENCY COOLING: Up to 90% energy savings
- NATIVE ENERGY STORAGE: 4-7 hours of storage allows for load shed and shift of AC
- DEMAND ENERGY: Up to 98% peak demand reduction

Supporting utility goals for decarbonization

1. Energy savings
 Reduces energy consumption by >60%

2. Decarbonization
 Eliminates 85% GWP refrigerant impact; promotes electrification

3. C&S alignment
 EER (Energy Efficiency Ratio) is 114 @ 105F

4. Demand flexibility
 Eliminates ~6 kW of peak electrical demand, saves ~10 MWh/year
Modeled case studies

Annual reduction in AC energy consumption

<table>
<thead>
<tr>
<th></th>
<th>SACRAMENTO</th>
<th>PALM SPRINGS</th>
<th>SAN DIEGO</th>
<th>LOS ANGELES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient Healthcare</td>
<td>84%</td>
<td>91%</td>
<td>70%</td>
<td>80%</td>
</tr>
<tr>
<td>Primary school</td>
<td>90%</td>
<td>95%</td>
<td>69%</td>
<td>81%</td>
</tr>
<tr>
<td>Small office</td>
<td>88%</td>
<td>92%</td>
<td>73%</td>
<td>80%</td>
</tr>
<tr>
<td>Stand alone retail</td>
<td>90%</td>
<td>92%</td>
<td>52%</td>
<td>76%</td>
</tr>
</tbody>
</table>

Reduction in peak AC electrical demand

<table>
<thead>
<tr>
<th></th>
<th>SACRAMENTO</th>
<th>PALM SPRINGS</th>
<th>SAN DIEGO</th>
<th>LOS ANGELES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient healthcare</td>
<td>80%</td>
<td>85%</td>
<td>60%</td>
<td>75%</td>
</tr>
<tr>
<td>Primary school</td>
<td>94%</td>
<td>95%</td>
<td>85%</td>
<td>95%</td>
</tr>
<tr>
<td>Small office</td>
<td>95%</td>
<td>89%</td>
<td>88%</td>
<td>88%</td>
</tr>
<tr>
<td>Stand alone retail</td>
<td>95%</td>
<td>90%</td>
<td>94%</td>
<td>89%</td>
</tr>
</tbody>
</table>
Blue Frontier Utility Opportunity Assessment

<table>
<thead>
<tr>
<th>TECHNOLOGY CATEGORY</th>
<th>ETP PRIORITIES</th>
<th>KNOWLEDGE INDEXES</th>
<th>OPPORTUNITIES</th>
<th>BARRIERS</th>
<th>NEXT STEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>ENERGY SAVINGS</td>
<td>TECHNICAL PERFORMANCE</td>
<td>CRITICAL ETP ACTIONS</td>
<td>IN-PROGRESS</td>
<td>COMPANY</td>
</tr>
<tr>
<td>BF ES/AC: Non-Vapor Compression, Liquid Desiccant AC, with Thermochemical Energy Storage, & Smart Controls</td>
<td>Reduces consumption by > 60%</td>
<td>Medium</td>
<td>Socialize within SCE</td>
<td>Field demo data</td>
<td>• Expanded manufacturing capability</td>
</tr>
<tr>
<td>DECARBONIZATION</td>
<td>MARKET KNOWLEDGE</td>
<td>PROGRAM INTERVENTION</td>
<td>Leverage Points</td>
<td>Utility-specific cost-benefit analysis</td>
<td>• Utility-specific cost-benefit analysis</td>
</tr>
<tr>
<td>Eliminates the GWP impact of refrigerants by 85%; promotes electrification demand for electricity is tied to renewable energy generation</td>
<td>Medium</td>
<td>Medium</td>
<td>NYSERDA Grant, ORNL & DOE support, CA Priority Partnership Areas</td>
<td>• Customer adoption</td>
<td></td>
</tr>
<tr>
<td>C&S ALIGNMENT</td>
<td>UTILITY VALUE</td>
<td>LEVERAGE POINTS</td>
<td>GAPS TO FILL</td>
<td>Workforce training</td>
<td></td>
</tr>
<tr>
<td>EER is 114 @ 105F</td>
<td>• Energy Savings per Unit: 10 MWh/yr over conventional AC</td>
<td>• NYSERDA Grant</td>
<td>• Field demo data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMAND FLEXIBILITY</td>
<td>• Demand Savings per Unit: ~6kW of peak demand</td>
<td>• ORNL & DOE support</td>
<td>• Utility specific use-case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminates ~6 kW of peak electrical demand, saves ~10 MWh/year</td>
<td>• CA Priority Partnership Areas</td>
<td>• EPRI</td>
<td>• Market size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKET SIZE</td>
<td>LEVERAGE POINTS</td>
<td>GAPS TO FILL</td>
<td>SOLUTION</td>
<td>Development of distribution & service relationships</td>
<td></td>
</tr>
<tr>
<td>• Beach-head: Utility Demos (NY & California)</td>
<td>• NYSERDA Grant</td>
<td>• Field demo data</td>
<td>• Utility agreement for HVAC as a service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SAM: 2.6 million units/yr</td>
<td>• Utility specific use-case</td>
<td>• Commercial availability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TAM: 40 million units in US alone</td>
<td>• EPRI</td>
<td>• Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• EPRI M&V testing and/or grant collaborator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Partnerships with developers, HVAC contractors, Building Energy Management Systems</td>
<td></td>
</tr>
</tbody>
</table>

For More Information
Daniel.Betts@BlueFrontierAC.com | (352) 258-1405

TED is a process by which innovative technology startups are selected for assessment and review by California utilities.